publications

* denotes equal contribution and joint lead authorship.
  1. Submillimeter robotic OCT neuroendoscope for deep-brain imaging in vivo.
    Chao Xu, Zhiwei Fang, Tinghua Zhang, Huxin Gao, Tao Zhang, Peng Liu, Hongliang Ren, and Wu Yuan.

    In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXII 2024.

    To effectively manage inoperable deep-seated brain diseases, a high-resolution diminutive endoscope is required. This endoscope should be capable of precisely localizing and evaluating lesions in vivo. In this study, we introduce an ultrathin robotic OCT neuroendoscope designed for minimally invasive and targeted imaging in the deep brain. The neuroendoscope, measuring only 0.6mm in diameter, is fabricated by coupling a custom micro-lens on the fiber tip. This fabrication technique enables high resolution imaging of 2.4μm x 4.5μm in the axial and transverse directions. To ensure precise trajectory planning and accurate lesion localization within the brain, we have developed a skull-mounted robotic neuroendoscope positioner, allowing for a localization accuracy of approximately 1mm. To demonstrate the capabilities of our technology, we have utilized electromagnetic tracking technology to enable us to control and navigate the neuroendoscope, allowing for the precise localization and imaging of targets within a brain phantom. The new technology holds significant potential to translate OCT neuroendoscopy into clinical practice for deep brain conditions.

2024